Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Pharmaceutics ; 14(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2023989

RESUMEN

Bacterial infections due to biofilms account for up to 80% of bacterial infections in humans. With the increased use of antibiotic treatments, indwelling medical devices, disinfectants, and longer hospital stays, antibiotic resistant infections are sharply increasing. Annual deaths are predicted to outpace cancer and diabetes combined by 2050. In the past two decades, both chemical and physical strategies have arisen to combat biofilm formation on surfaces. One such promising chemical strategy is the formation of a self-assembled monolayer (SAM), due to its small layer thickness, strong covalent bonds, typically facile synthesis, and versatility. With the goal of combating biofilm formation, the SAM could be used to tether an antibacterial agent such as a small-molecule antibiotic, nanoparticle, peptide, or polymer to the surface, and limit the agent's release into its environment. This review focuses on the use of SAMs to inhibit biofilm formation, both on their own and by covalent grafting of a biocidal agent, with the potential to be used in indwelling medical devices. We conclude with our perspectives on ongoing challenges and future directions for this field.

2.
ACS Chem Biol ; 17(5): 1239-1248, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1805550

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a major threat to human health, as the US mortality rate outweighs those from HIV, tuberculosis, and viral hepatitis combined. In the wake of the COVID-19 pandemic, antibiotic-resistant bacterial infections acquired during hospital stays have increased. Antibiotic adjuvants are a key strategy to combat these bacteria. We have evaluated several small molecule antibiotic adjuvants that have strong potentiation with ß-lactam antibiotics and are likely inhibiting a master regulatory kinase, Stk1. Here, we investigated how the lead adjuvant (compound 8) exerts its effects in a more comprehensive manner. We hypothesized that the expression levels of key resistance genes would decrease once cotreated with oxacillin and the adjuvant. Furthermore, bioinformatic analyses would reveal biochemical pathways enriched in differentially expressed genes. RNA-seq analysis showed 176 and 233 genes significantly up- and downregulated, respectively, in response to cotreatment. Gene ontology categories and biochemical pathways that were significantly enriched with downregulated genes involved carbohydrate utilization, such as the citrate cycle and the phosphotransferase system. One of the most populated pathways was S. aureus infection. Results from an interaction network constructed with affected gene products supported the hypothesis that Stk1 is a target of compound 8. This study revealed a dramatic impact of our lead adjuvant on the transcriptome that is consistent with a pleiotropic effect due to Stk1 inhibition. These results point to this antibiotic adjuvant having potential broad therapeutic use in combatting MRSA.


Asunto(s)
COVID-19 , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Carbazoles/farmacología , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Pandemias , Staphylococcus aureus , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA